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1. Leitmotif’s architecture and parameterizations 

1.1. Leitmotif’s architecture 

Motif-HMM was first described by Grundy et al. (1997). The original motif-HMM (mHMM) has a 

sequence of match states (without insert/delete states), flanked by single self-looping insert states that 

model inter-motif regions. Leitmotif differs from the original version somewhat since it models the motif 

region with a profile-HMM type architecture (described for example in Durbin et al., 1998). The 

advantage of this architecture is that it allows insertions and deletions in the motif. Accordingly, 

Leitmotif has the TP (Transition Probability) parameter which corresponds to the match to match 

transition probability in the motif region (e.g. �����

�  in Fig. 1). If the value of this parameter is set to 

less than one, this will allow match to insert (i.e. insertion) and match to delete (i.e. deletion) transitions. 

 

A motif region of the mHMM (e.g. Leitmotif) is much shorter than the typical profile-HMM and its 

length equals the motif length.  Emission probabilities of the self-looping insert states in Leitmotif 

(shaded grey in Fig.1) are set to background probabilities. Since the sequence score is computed as a 

log-likelihood ratio of the given model over the random model (with the random model having 

background emission probabilities) amino acid residues of the inter-motif regions have no contribution 

to the final score. This is desirable since in contrast to profile-HMM, in motif scanning one is interested 

only in finding motifs; inter-motif regions (residues) are of no interest. Transition Probabilities (TP) of 

the inter-motif self-looping insert states are computed based on the expected inter-motif distance 

provided by the user. Namely, in accordance with the model architecture, the random variable 

corresponding to the number of inter-motif residues follows the geometric distribution (with support 

�� = ℕ and 
��
 = 1/��
�). For example, with an inter-motif expected distance of 100 residues, it easily 

follows that ��
� = 0.01. 

Fig. 1.  Leitmotif’s architecture. A motif region (dashed box) has the same architecture as the standard profile-HMM. Unlike the profile-

HMM, a motif region is in general very short. Each “column” in a motif region is composed of stacked match, insert and delete states. For 

example, if a motif is 10 residues long, the corresponding motif region will be composed of 10 match-insert-delete columns. The figure above 

shows two match-insert-delete columns followed by an unspecified number of columns represented by three dots and ending in the final 

column. Note that the final column lacks an insert state. Motif regions are followed by single self-looping insert states (shaded in grey) which 

model regions between motifs, and regions between a motif and the N/C terminus. Their emission probabilities are set to background 

probabilities. Transition probabilities of the inter-motif insert states are computed based on user-defined expected inter-motif distances as 

described above. 

 

1.2 A heuristic formula for determining distance penalties 
 

 �����_���_����� = ���_����� − ! ∙ #�$����� ∙ log()�|+| + 1
 



 
���_����� is the Viterbi log-likelihood ratio for a given sequence; |+| is the absolute value of the 

difference between the user-specified expected distance between motifs (or between a motif and the N/C 

terminus) and the distance returned by the algorithm. #�$����� is the Viterbi log-likelihood score of 

the optimal sequence (i.e. artificial sequence containing the most frequent motif residues and having 

user-defined motif distances). This term is necessary since sequence scores vary significantly depending 

on the number of given motifs as well as motif length(s).  ! is a parameter which depends on the user-

defined penalty strength. Namely, ! = 0 for no penalty,  ! = 0.1 for Weak penalty, ! = 1 for Medium 

penalty and ! = 10  for Strong penalty. Therefore penalty increases incrementally by one order of 

magnitude with each step. Individual distance penalties are averaged and subtracted from the sequence 

score.  

 

1.3. Computing emission probabilities and sequence weighting options  

As stated in the manuscript, Leitmotif offers four different ways of computing match state emission 

probabilities. Different algorithms were implemented since: (i) HMMER uses Dirichlet Mixture (DM) 

as default for its hmmsearch program with accompanying priors as described in (Sjölander et al., 1996); 

(ii) Henikoff Algorithm (HA) showed superior performance in (Henikoff et al., 1996). Note that only 

the HA uses substitution matrices; (iii) Modified Ancestral algorithm (MA) was used in our previous 

study (Vujaklija et al., 2016) where it showed very good performance; and (iv) Simple Pseudocounts 

algorithm (SP; Durbin et al., 1998) is appropriate in cases of large and phylogenetically representative 

seed.  

Leitmotif uses sequence weighting by default since it is a standardly used method to reduce the influence 

of phylogenetically biased samples (Durbin et al., 1998). Note that only the DM algorithm features both 

relative and total sequence weighting since it is the only algorithm using priors. 

 

2. Algorithm performance on different datasets  

In the Results section of our manuscript we summarized Leitmotif’s performance on two datasets (the 

GDSL protein family and the Desaturases First subfamily) using selected IR/DP parameters (Table 1 

A&B in the main text). Detailed results of these analyses are described below.  

2.1 ROC scores  

Leitmotif performances were compared using ROC curves, ROC scores and slightly modified versions 

of the ROC � scores which we call a normalised ROC � or nROC � for short (Grundy et al., 1997 used 

the same normalisation). The ROC � is defined as the area under the ROC curve until the first � 

negatives are found (Gribskov, M. and Robinson, N.L. 1996). The advantage of ROC � scores over 

standard ROC is described in detail in (Gribskov, M. and Robinson, N.L. 1996). 

The problem with ROC � however, is that it sometimes doesn't give very intuitive results. For example, 

if there are 100 negatives in the test dataset and an algorithm yields a perfect ranking with all positives 

ranked above all the negatives (thus the ROC curve is a stepwise function ��$
 = 1;  $ ∈ /0,11), the 

ROC 1 score is just 1/100 = 0.01 (i.e. the area under the ROC curve corresponding to a TN rate of 0.01). 

In case of a perfect ranking with 500 negatives ROC 1 would be 1/500 = 0.002 (i.e. the area under the 

ROC curve corresponding to a TN rate of 0.002), although the ranking is ideal in both cases. Hence, it 

makes sense to normalize this number (ROC �) by dividing it by the area under an ideal stepwise ROC 

curve up to the corresponding percentage of true negatives (i.e. � divided by the total number of 

negatives). In the example above that would be nROC 1 = (ROC 1)/0.01 = 1 for the 100 negatives case 



and analogously nROC 1 = (ROC 1)/0.002 = 1 for the 500 negatives case, thus giving the more intuitive 

result. Note that both ROC � and nROC � (unlike standard ROC) are meaningful as a comparison 

measure of different algorithms only on the same test dataset since both depend on the number of 

negatives in the test dataset.   

2.2 GDSL family analysis  

In the Results section in the main text (Table 1A) we summarized results of the GDSL family analysis 

using selected IR/DP parameter values. The GDSL dataset used in this study is almost identical to the 

test dataset used in Vujaklija I et al., (2016). It comprises 804 GDSL sequences (Supplement GDSL 

Test sequences & GDSL Sequence IDs) divided into two subsets, 624 Positives and 180 Negatives. It 

was obtained by removing, from the initial GDSL dataset (Vujaklija, I et al., 2016), 16/820 sequences 

(2%) since they were either identical, highly similar (≥ 98%) or very ambiguous and we were uncertain 

how to assign them, to Positives or Negatives.  The removal of these sequences did not change 

significantly the ratio of Positives vs Negatives. It was changed from 20.85% to 21.89%.   

2.2.1. Selection of DP/IR parameters  

The reasons for using Weak (W), Medium (M) and Strong (S) Distance Penalties (DP) in cases of one, 

two and three GDSL motifs respectively are described below. 

The DP parameter’s usefulness will strongly depend on the protein family being analysed. In some cases 

where distances are (very) conserved this parameter is very useful (e.g. Desaturases First subfamily 

described in 2.3 is an excellent example). In cases where distances are moderately conserved, the 

usefulness of this parameter will be moderate. In other cases where motif distances are not conserved 

(i.e. highly variable) the effect of DP will be insignificant or even detrimental.   

In the case of GDSL lipases, it is known from literature that their distances are moderately conserved. 

Thus, the presence of all three conserved motifs is a much stronger predictor of family membership than 

motif distances. Moreover, setting DP to Strong (or Medium) would mean that one expects positives to 

have all four distances (two between motifs and two between a motif and N/C terminus) close to the 

expected distances, which is unlikely in GDSL case since motif distances are not strongly conserved.  

Accordingly we used a Weak DP in this case. 

In case of two motifs the amount of useful information is decreased thus reducing Leitmotif’s 

discriminatory power since it scans for the presence of only 2/3 motifs. Taking this into consideration 

our rationale was to try to compensate this negative effect by giving a stronger influence to DP. Namely 

we took into consideration that the GDSL catalytic domain is moderately conserved (around 400 

residues) and that the 1st and 3rd motifs are located close to the N and C terminus respectively. 

Accordingly we used a Medium DP in this case. 

Finally, in the case of only one motif, scanning is even more challenging. Analogously, we used the 

same rationale as in the two motifs case and thus have further increased DP to Strong. 

Residues selected as immutable (IR) were Ser (1st motif) & His (3rd motif).  This was based on reported 

literature data (Leščić Ašler et al., 2017) and our experimental results. Namely, the site-directed 

mutagenesis of several conserved residues confirmed the complete loss of enzyme activity only in the 

absence of Ser-His (A. Bielen PhD thesis, 2011, University of Zagreb). Our result was in line with the 

authors proposing that the catalytic mechanism is based on the Ser-His dyad.   

Note that in the Desaturases First subfamily case, IR were selected exclusively based on the seed dataset 

(2.3.3) 

 



2.2.2. Results of GDSL family analysis 

Tables A1, A2 and A3: Different emission probability algorithms with/without IR/DP parameters  

 

 

A1 ALG IR SW TP SM  MD DP ROC nROC 50 nROC 5 nROC 1 

3
 M

O
T

IF
S

 

MA 

[6S,,4H] 

R 0.99 None 50:125:175:50 

W 0.9902 0.9651 0.7968 0.7324 

[6S,,4H] / 0.9895 0.9629 0.7936 0.6987 

[,,] W 0.9800 0.9286 0.7314 0.609 

[,,] / 0.9784 0.9239 0.7202 0.5994 

DM 

[6S,,4H] 

R&T 0.99 None 50:125:175:50 

W 0.9899 0.9663 0.891 0.8798 

[6S,,4H] / 0.9896 0.9651 0.8907 0.8734 

[,,] W 0.9842 0.9481 0.8689 0.8333 

[,,] / 0.9834 0.9457 0.8663 0.8349 

[6S,,4H] 

R 0.99 None 50:125:175:50 

W 0.9868 0.9536 0.8029 0.7115 

[6S,,4H] / 0.9856 0.9495 0.7949 0.6891 

[,,] W 0.9793 0.9269 0.8029 0.7115 

[,,] / 0.9777 0.922 0.7917 0.6891 

HA 

[6S,,4H] 

R 0.99 
BLOSUM 

62 
50:125:175:50 

W 0.9883 0.9578 0.7814 0.75 

[6S,,4H] / 0.9879 0.9563 0.7827 0.7388 

[,,] W 0.9819 0.9361 0.7462 0.6603 

[,,] / 0.9813 0.9338 0.7426 0.6426 

SP 

[6S,,4H] 

R 0.99 None 50:125:175:50 

W 0.9832 0.9403 0.7372 0.7035 

[6S,,4H] / 0.9832 0.9405 0.7423 0.6939 

[,,] W 0.9782 0.9243 0.7372 0.7051 

[,,] / 0.9778 0.9242 0.7285 0.6939 

A2 ALG IR SW TP SM MD DP ROC nROC 50 nROC 5 nROC 1 

2
 M

O
T

IF
S

 

MA 

[6S,4H] 

R 0.99 None 50:300:50  

M 0.9879 0.9588 0.8458 0.7901 

[6S,4H] / 0.9774 0.9225 0.5125 0.2564 

[,] M 0.9735 0.9233 0.7686 0.7196 

[,] / 0.9665 0.9009 0.4965 0.2564 

DM 

[6S,4H] 

 R&T 0.99 

 

None 

 

 

50:300:50 

 

M 0.9807 0.9403 0.7186 0.5192 

[6S,4H] / 0.9715 0.9056 0.4503 0.1282 

[,] M 0.9734 0.9271 0.7109 0.5513 

[,] / 0.9651 0.8936 0.4503 0.1282 

[6S,4H] 

R 0.99 None 50:300:50 

M 0.9865 0.9553 0.8295 0.7772 

[6S,4H] / 0.9732 0.912 0.499 0.3109 

[,] M 0.9774 0.9329 0.7939 0.7772 

[,] / 0.9662 0.9038 0.499 0.3109 

HA 

[6S,4H] 

R 0.99 
BLOSUM

62 
50:300:50 

M 0.985 0.954 0.833 0.7997 

[6S,4H] / 0.9743 0.9125 0.4769 0.1138 

[,] M 0.9753 0.9305 0.8006 0.7804 

[,] / 0.9677 0.9021 0.475 0.1138 

SP 

[6S,4H] 

R 0,99 None 50:300:50 

M 0,9813 0,9474 0,8394 0,8093 

[6S,4H] / 0,9673 0,8988 0,4795 0,2228 

[,] M 0,9711 0,9202 0,7635 0,6843 

[,] / 0,9622 0,8924 0,4795 0,2228 



 

 
ALG-Algorithms: MA-Modified Ancestral, DM-Dirichlet Mixture, HA-Henikoff Algorithm, SP-Simple Pseudocounts. IR-Immutable 

Residues. Motif descriptions: “[6S, ,4H]”, “[6S,4H]”, “[6S]”. “6S” represents Ser at position 6 (motif 1); 4H represents His at position 4 (motif 

3) (Fig. 1, upper panel in the main text). Motifs are separated by commas. SW-Sequence Weighting (R-Relative; R&T- Relative and Total), 

TP-match to match Transition Probability, SM-Substitution Matrix, MD- Motif Distances, MD were chosen based on reported data and expert 

knowledge (Vujaklija et al., 2016; Upton and Buckley, 1995). DP-Distance Penalty (“/”-None; “W”-Weak, “M”-Medium, “S”-Strong) were 

chosen as described in 2.2.1; Light grey rows show ROC scores with selected IR and DP; Dark grey rows show ROC scores without IR/DP 

parameters.      

 

 

Tables A4, A5 and A6:  Results of Leitmotif performance with Weak, Medium and Strong Distance Penalty (DP) for three, two and one motif.   

 

A3 ALG IR SW TP SM  MD DP ROC nROC 50 nROC 5 nROC 1 

1
 M

O
T

IF
 

MA 

[6S] 

R 0.99 None 50:368 

S 0.8916 0.6661 0.1083 0.008 

[6S] / 0.7633 0.253 0.0144 0.0048 

[] S 0.8601 0.5706 0.0154 0.008 

[] / 0.7517 0.2483 0.0144 0.0048 

DM 

[6S] 

R&T 0.99 None 50:368 

S 0.8991 0.6729 0.1622 0.0064 

[6S] / 0.7596 0.2432 0.0042 0 

[] S 0.7681 0.2754 0.0122 0.0016 

[] / 0.7565 0.2432 0.0042 0 

[6S] 

R 0.99 None 50:368 

S 0.8945 0.6807 0.1583 0.008 

[6S] / 0.7679 0.2701 0.0317 0.008 

[] S 0.859 0.5699 0.0192 0.008 

[] / 0.7625 0.2701 0.0317 0.008 

HA 

[6S] 

R 0.99 
BLOSUM

62 
50:368 

S 0.8915 0.6693 0.109 0.008 

[6S] / 0.7619 0.2563 0.0157 0.0112 

[] S 0.8666 0.5856 0.0196 0.008 

[] / 0.7579 0.2563 0.0157 0.0112 

SP 

[6S] 

R 0.99 None 50:368 

S 0.8958 0.6857 0.109 0.008 

[6S] / 0.765 0.2657 0.0224 0.0064 

[] S 0.8704 0.6048 0.0215 0.008 

[] / 0.7616 0.2657 0.0224 0.0064 

A4 ALG IR SW TP SM  MD DP ROC nROC 50 nROC 5 nROC 1 

3
 M

O
T

IF
S

 

MA 

[6S,,4H] 

 

 

R 

 

0,99 None 50:125:175:50 

W 0.9902 0.9651 0.7968 0.7324 

[6S,,4H] / 0.9895 0.9629 0.7936 0.6987 

[6S,,4H] M 0.9818 0.9348 0.6603 0.4663 

[6S,,4H] S 0.9356 0.8012 0.2494 0.1939 

[,,] W 0.9800 0.9286 0.7314 0.6090 

[,,] / 0.9784 0.9239 0.7202 0.5994 

[,,] M 0.9692 0.8955 0.6321 0.4696 

[,,] S 0.9055 0.7062 0.2144 0.1779 

A5 ALG IR SW TP SM  MD DP ROC nROC 50 nROC 5 nROC 1 

2
 M

O
T

IF
S

 

MA 

[6S,4H] 

R 0,99 None 50:300:50 

M  0.9879 0.9588 0.8458 0.7901 

[6S,4H] W 0.9797 0.9303 0.5625 0.3333 

[6S,4H] / 0.9774 0.9225 0.5125 0.2564 

[6S,4H] S 0.9471 0.8284 0.4792 0.3429 



 

ALG-Algorithms: MA-Modified Ancestral, Motif descriptions: “[6S, ,4H]”, “[6S,4H]”, “[6S]”. “6S” represents Ser at position 6 (motif 1); 4H 

represents His at position 4 (motif 3) (Fig 1, upper panel in the main text). Motifs are separated by commas. SW-Sequence Weighting (R-

Relative), TP-match to match Transition Probability, SM-Substitution Matrices, MD-Motif Distances. MD were chosen based on expert 

knowledge and reported data (Vujaklija et al., 2016; Upton and Buckley, 1995). DP-Distance Penalty (“/”-None; “W”-Weak, “M”-Medium, 

“S”-Strong); Light grey row shows ROC scores with selected IR and DP; Dark grey rows show ROC scores without IR/DP parameters.     

 

2.2.3. ROC curves with different parameterizations  

Fig. 2. ROC curves for three motifs - GDSL lipases dataset. Selected values for IR/DP are marked by asterisks. A) Results with Immutable 

Residues (IR) only. As shown in the figure setting IR improves the ROC score (i.e. area under the ROC curve). B) Results with Distance 

Penalties (DP) only.  As can be seen in the figure modest improvement in ranking is obtained by using Weak DP. C) Results of combining DP 

and IR. As shown in figures A, B, and C the best overall ROC score in this case is obtained by using a combination of Weak DP and IR (for 

explanation see 2.2.1). 

 

[,] M  0.9735 0.9233 0.7686 0.7196 

[,] W 0.9693 0.9096 0.5426 0.3285 

[,] / 0.9665 0.9009 0.4965 0.2564 

[,] S 0.9136 0.7245 0.1660 0.0256 

A6 ALG IR SW TP SM  MD DP ROC nROC 50 nROC 5 nROC 1 

1
 M

O
T

IF
S

 

MA 

[6S] 

R 0,99 None 50:368 

S 0.8916 0.6661 0.1083 0.0080 

[6S] M 0.8432 0.4881 0.1205 0.0433 

[6S] W 0.7727 0.2771 0.0337 0.0112 

[6S] / 0.7633 0.2530 0.0144 0.0048 

[] S 0.8601 0.5706 0.0154 0.0080 

[] M 0.8198 0.4399 0.1013 0.0497 

[] W 0.7600 0.2713 0.0311 0.0112 

[] / 0.7517 0.2483 0.0144 0.0048 



Fig. 3. ROC curves for two motifs - GDSL lipases dataset. Selected values for IR/DP are marked by asterisks. A) Results with Immutable 

Residues (IR) only. As shown in the figure setting IR improves the ROC score. B) Results with Distance Penalties (DP) only.  As can be seen 

in the figure improvement in ranking is obtained by using Medium DP. C) Results of combining DP and IR. As shown in figures A, B, and C 

the best overall ROC score in this case is obtained by using a combination of Medium DP and IR (for explanation see 2.2.1). 

Fig. 4. ROC curves for one motif - GDSL lipases dataset. Selected values for IR/DP are marked by asterisks. A) Results with Immutable 

Residues (IR) only. As shown in the figure setting IR improves the ROC score. B) Results with Distance Penalties (DP) only.  As can be seen 

in the figure significant improvement in ROC score is obtained by using Strong DP. C) Results of combining DP and IR. As shown in figures 

A, B, and C the best overall ROC score is obtained by using a combination of Strong DP and IR (for explanation see 2.2.1). 

Altogether, results in (2.2.2. Tables A1-A6 & 2.2.3. Fig. 2-4) show best results (best ROC scores) are 

obtained when using all three motifs. This is expected since three motifs provide more information than 

one or two. In addition, using selected IR and DP (Weak, Medium and Strong for three, two and one 

motif respectively) marked by asterisks in Fig. 2-4 and shaded light grey in Tables A1-A6 increases 

ROC scores. The reasons for selecting these parameters are described in 2.2.1. For comparison purposes 

we also show ROC scores and ROC curves for all other DP values (Tables A1-A6; Fig. 2-4/B&C). 

Next, the effect of distance penalties (/, W, M, S) was analysed in more detail. We examined the 

distances between motifs in positives and negatives in the whole GDSL dataset. Interestingly, there is 

little difference between positives and negatives in terms of mean and standard deviation for distances 

from the N-terminus to the 1st motif and moderate difference for distances from the 3rd motif to the C-

terminus (Table A7).  However, there is a large difference both in standard deviation (SD) and mean for 

the other two distances (from 1st to 2nd and from 2nd to 3rd motif).  

 
Table A7 Variations of motif distances in the GDSL dataset (Mean ± SD) 

 

Based on this observation it is clear that the positive effect of distance penalty is due to the huge 

difference in SD between positives and negatives for these two distances. Noteworthy, in the case of 

GDSL lipases we have set expected distances of 50, 125, 177 and 50 residues for distances from the N-

terminus to 1st motif, 1st to 2nd, 2nd to 3rd and 3rd to C-terminus respectively. As can be seen in Table A7 

these distance were suboptimal since mean distances in the positives dataset are 39, 119, 158 and 30. 

Therefore, this has had a negative effect which is particularly strong in the case of the Strong DP which 

is very sensitive to small differences as illustrated in the case of the Desaturases First subfamily (2.3).   

Distances from N-terminus to 1st motif   Distances from 1st motif to 2nd motif 

Positives:  39.0545 ± 36.3549 Positives:    119.2115 ± 23.1950 

Negatives: 38.2500 ± 33.8585 Negatives: 72.6444 ± 83.7718 
 

Distances from 2nd motif to 3rd motif  Distances from 3rd motif to C-terminus 

Positives:    157.9022 ± 23.8809 Positives:    29.4583 ± 14.5323 

Negatives: 121.0278 ± 161.2368 Negatives: 37.7500 ± 29.5407 



2.3. Desaturases First subfamily analysis 

To further confirm the benefit of new parametrizations, we tested Leitmotif’s performance on an 

additional dataset: the Desaturases First subfamily which is a member of the Fatty Acid (FA) 

Desaturases family. The FA Desaturases family (Pfam database PF00487; 21,042 sequences) comprises 

four distinct subfamilies (Desaturases First, Desaturases Omega, Desaturases Front-end, and 

Desaturases Sphingolipid; Hashimoto et al., 2008; Feng et al., 2017).  

The Desaturases First subfamily has been selected for analysis since it has a previously described protein 

motif signature (Hashimoto et al., 2008), thus providing unbiased criteria for annotation. Additionally, 

for this subfamily we were able to retrieve the highest number (82/105) of previously annotated 

sequences described in the Hashimoto et al. study. The remaining missing sequences (23/105) were 

removed from the standardly used databases (UniProt, KEGG, NCBI) and have not been preserved in 

their archives (personal communication). 

 

2.3.1. Datasets and experimental procedure 
 

Lacking expert knowledge, and for purposes of unbiased annotation, firstly we divided the “Hashimoto 

dataset” (82 sequences) into two datasets:  

(i) the seed dataset (19/82 sequences) reported as biochemically or genetically characterized in 

(Hashimoto et al 2008, Supplementary Data 1-1); 

(ii) the annotation dataset (63/82 sequences) which was subsequently used to devise criteria for labelling 

sequences in the test dataset (described below) as positive or negative.  
 

 

Fig. 5.  Experimental procedure flowchart 

First, in order to reduce the high number of easily 

discernible sequences belonging to the other three 

subfamilies, which would artificially inflate the ROC 

score (Gribskov and Robinson, 1996), HMMER 

(default settings with seed dataset) was used to filter 

them out from the Pfam PF00487 database (Fig. 5). 

All sequences which passed the HMMER default 

threshold were subsequently used as a test dataset 

(Supplement Desauturases First Test sequences).  

The test dataset (5509 sequences in total) was then 

divided into two subsets (4687 positives and 822 

negatives) based on the annotation criteria (derived 

based on the annotation set only) and listed below. 

Next, the seed dataset was used for Leitmotif 

parameterization (both default as well as DP/IR 

parameterization) and Leitmotif was run both with 

selected DP/IR values and with the default 

parameterization (no DP/IR) (Fig. 5). 

 

 

 



2.3.2. Annotation criteria 

The annotation criteria used to label sequences in the test dataset as positive or negative was based on 

the annotation dataset (2.3.1). The annotation criteria are as follows: 

(i) Motif signatures criterion: a positive sequence has the motif signature defined by completely 

conserved motif residues in the annotation dataset. 

 

Motif 1: H – (4X) – H 

Motif 2: H – (2X) – H – H    

Motif 3: (X) – N – (X) – H – H  

 

(ii) Motif distance criterion: a positive sequence has a distance of 30 to 32 residues between its 1st and 

2nd motif. This specific distance range was chosen since motif distances between the 1st and 2nd motif 

are strongly conserved (61/63 sequences have 31 residues between 1st and 2nd motif and 2/63 have 32 

residues). The distance of 30 was also included since we were not able to retrieve the complete 

“Hashimoto dataset (23/105 were missing), as stated above.  

 

2.3.3. Selection of DP/IR parameters 

The seed motifs used with Leitmotif were extracted from the multiple sequence alignment (PROMALS) 

of the seed dataset.  Figure 6 (left panel) shows sequence logos of seed motifs which have 11 completely 

conserved residues. Accordingly, all 11 of them were set as immutable (IR) for model parameterization. 

Note that only 8/11 residues are conserved in the motif signature (2.3.2). The right panel shows that 

distances in the seed between the 1st and 2nd motif are completely conserved (31 residues), distances 

from the 2nd to 3rd motif are somewhat conserved (127-136), whereas distances from 1st/3rd motif to N/C 

terminus are not conserved. Therefore, based on the seed the most appropriate choice for DP between 

the 1st  and 2nd  motif is Strong; for DP between the 2nd and 3rd  motif is Medium or Weak, and None 

between 1st/3rd motif to N/C terminus. To isolate the effect of DP to a single parameter we used DP for 

the distance between the 1st and 2nd motif only. 

 

Fig. 6.  Seed motifs. The left panel shows motif sequence logos generated by Leitmotif automatically after inserting motif alignments (19 

sequences) into the motif input window. The right panel shows output results of the 19 seed sequences (seed dataset) scanned by Leitmotif 

(default parameterization) with distances between motif(s) and/or N/C-terminus.  As depicted in the figure distances between the 1st and 2nd 

motifs are completely conserved (31 residues). Note that ranking scores are omitted from the figure due to limited space. 



2.3.4. Results of Desaturases First subfamily analysis 

 
Tables B1-B7 Leitmotif’s performance on the test dataset with and without (IR/DP) parameters. As in the previous analysis, Relative (R) 

Sequence Weighting (SW) and match to match transition probability of 0.99 was used. 

 

 

 

 

 

 

B1 ALG IR MD DP ROC nROC 50 nROC 5 nROC 1 

3
 M

O
T

IF
S

 

MA 

1 [H-R-(3X)-H],  

2 [H-R-X-H-H],  

3 [H-N-X-H-H]  103-31-134-79 

 / - / - / - / 0.9271 0.5321 0.0536 0.0019 

[,,]  / - / - / - / 0.8741 0.4959 0.0536 0.0019 

B2 ALG IR MD DP ROC nROC 50 nROC 5 nROC 1 

3
 M

O
T

IF
S

 

MA 

[,,]  

103-31-134-79 

/ - S - / - / 0.9559 0.6110 0.4043 0.3643 

[,,] / - M - / - / 0.9328 0.5837 0.3873 0.3596 

[,,] / - W - / - / 0.8854 0.5098 0.1021 0.0060 

[,,] / - / - / - / 0.8741 0.4959 0.0536 0.0019 

B3 ALG IR MD DP ROC nROC 50 nROC 5 nROC 1 

3
 M

O
T

IF
S

 

MA 

1 [H-R-(3X)-H],  

2 [H-R-X-H-H],  

3 [H-N-X-H-H] 

103-31-134-79 

/ - S - / - / 0.9885 0.9088 0.6419 0.5713 

1 [H-R-(3X)-H],  

2 [H-R-X-H-H],  

3 [H-N-X-H-H] 
/ - M - / - / 0.9661 0.7608 0.4864 0.3652 

1 [H-R-(3X)-H],  

2 [H-R-X-H-H],  

3 [H-N-X-H-H] 

/ - W- / - / 0.9306 0.5567 0.1039 0.0062 

[,,] / - / - / - / 0.8741 0.4959 0.0536 0.0019 

B4 ALG IR MD DP ROC nROC 50 nROC 5 nROC 1 

2
 M

O
T

IF
S

 

MA 

 1 [H-R-(3X)-H],  

 2 [H-R-X-H-H],  

 103-31-213 

/ - / - / - / 0.7593 0.1023 0.0009 0 

[,] / - / - / - / 0.7555 0.1023 0.0009 0 

B5 ALG IR MD DP ROC nROC 50 nROC 5 nROC 1 

2
 M

O
T

IF
S

 

MA 

[,] 

103-31-213 

/ - S - / - / 0.8707 0.1155 0.0010 0 

[,] / - M - / - / 0.8588 0.1155 0.0010 0 

[,] / - W - / - / 0.7624 0.1083 0.0010 0 

[,] / - / - / - / 0.7555 0.1023 0.0009 0 



 

 

Algorithm: MA-Modified Ancestral, IR-Immutable Residues; Description of motifs: Motif 1 ([H-R-(3X)-H]; letters represent residues set as 

immutable (IR) according to seed motifs (Fig. 6 Left panel), His at position 1, Arg at position 2, and His at position 6); Motif 2 ([H-R-X-H-

H]; letters represent residues set as immutable (IR) according to seed motifs, His at position 1, Arg at position 2, and His at positions 5 & 6); 

Motif 3 ([H-N-X-H-H]; letters represent residues set as immutable (IR) according to seed motifs, His at position 1, Asp at position 2, and His 

at positions 5 & 6). MD- Motif distances, MD were chosen based on seed sequences (Fig. 6 Right panel). DP-Distance Penalty strengths (“/”-

None; “W”-Weak, “M”-Medium, “S”-Strong); Light grey rows show ROC scores with selected IR/DP values; Dark grey rows show scores 

without DP and IR parameters.      

 

   

 

2.3.5. ROC curves with different parameterizations 

 

Fig. 7. (A, B & C): Desaturases First subfamily ROC curves for 3 motifs. Selected values for IR/DP are marked by asterisks. A) Results 

with Immutable Residues (IR) only. As shown in the figure setting IR substantially improves ROC score (i.e. area under the ROC curve). B) 

Results with Distance Penalties (DP) only.  As can be seen in the figure significant improvement in ranking is obtained by using DP. Moreover 

increasing the DP from None to Strong gradually improves the ROC scores (from 0.8741 to 0.9559 respectively). C) Results of combining DP 

and IR. As shown in the figure ROC scores are substantially improved with the combination of IR and DP. Moreover, comparing Figures A, 

B, and C shows that the best overall ROC score is obtained when using the combination of Strong DP and IR.  

B6 ALG IR MD DP ROC nROC 50 nROC 5 nROC 1 
2

 M
O

T
IF

S
 

MA 

1 [H-R-(3X)-H],  

2 [H-R-X-H-H],  

103-31-213 

/ - S - / - / 0.8723 0.1155 0.0010 0 

1 [H-R-(3X)-H],  

2 [H-R-X-H-H],  
/ - M - / - / 0.8618 0.1155 0.0010 0 

1 [H-R-(3X)-H],  

2 [H-R-X-H-H],  
/ - W - / - / 0.7655 0.1085 0.0010 0 

[,]  / - / - / - / 0.7555 0.1023 0.0009 0 

B7 ALG IR MD DP ROC nROC 50 nROC 5 nROC 1 

1
 M

O
T

IF
S

 

MA 

1 [H-R-(3X)-H] 

103-244 

/ - / - / - / 0.7409 0.0315 0.0003 0 

1 [ ]  / - / - / - / 0.7389 0.0315 0.0003 0 



 

 

Fig. 8. (A, B & C): Desaturases First subfamily ROC curves for two motifs (1st & 2nd). Selected values for IR/DP are marked by asterisks. 

A) Results with Immutable Residues (IR) only. As can be seen in this setting the difference between ROC scores is very modest (0.7555 vs 

0.7593). B) Results for Distance Penalties (DP) only. As can be seen significant improvement in ranking is obtained by using DP. Increasing 

the DP from None to Strong increases ROC scores. C) Results with the combination of DP and IR. Again it is clearly visible that the ROC 

score is improved by using DP and IR vs no IR/DP. In line with the results shown in A, the additional benefit of IR is very modest. 

 

 

Fig. 9. Desaturases First subfamily ROC curves for one motif (1st). Selected values for 

IR/DP are marked by asterisks. Results with only Immutable Residues (IR) and 1st motif. As 

shown in the figure, setting residues as immutable improves the ROC score very slightly. 

 

In summary, using IR/DP increases ROC scores in all cases (Fig. 7, 

8 & 9). As expected, best results are obtained by using all three 

motifs as in the GDSL case. Analogously, we have included 

additional cases with one and two motifs. This was done in order to 

illustrate that DP & IR can improve ROC scores regardless of the 

number of motifs. Expectedly, discarding motifs limits the benefit 

of IR as can be seen by comparing Figures 7A, 8A and 9. 

 

Next, we analysed the unusual stepwise shape of ROC curves (Fig. 7, 8 & 9). This is due to the fact that 

there is a large number of negative sequences in the test dataset which have the Desaturases First motif 

signature with a distance of 34 residues between the 1st and 2nd motif. These sequences were annotated 

as negatives since they don’t satisfy the motif distance criterion (2.3.2). Prompted by this we analysed 

all distances between the 1st and 2nd motif in the test dataset. Their histogram is shown in Figure 10. As 

can be seen, there is a very strong peak at 31 (which was expected taking into account the Hashimoto 

annotation dataset as well as the seed dataset). However, the strong peak around 34 is very unusual 

since the number of sequences with a distance of 33 is negligible (taking into account the size of the 

dataset). In light of this, and because the Hashimoto annotation dataset as well as seed dataset comprise 

evolutionary divergent sequences, it seems plausible that the sequences with a distance of 34 comprise 

another as yet undescribed subfamily within the Desaturases First subfamily. However, to investigate 

this hypothesis further is beyond the scope of this manuscript. 

 

Note also that there is a huge number of sequences whose distances between the 1st and 2nd motif range 

from 30 to 32 (4998 in total), whereas the number of sequences with distances beyond this range (apart 

from the 34 case) drops sharply. This strongly indicates that the 30 to 32 motif distance criterion, defined 

based on the Hashimoto annotation dataset, is indeed appropriate.  

 



 
Fig. 10. Distances between the 1st and 2nd motif in the test dataset. 
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